

PUMP HANDBOOK

grindex

30

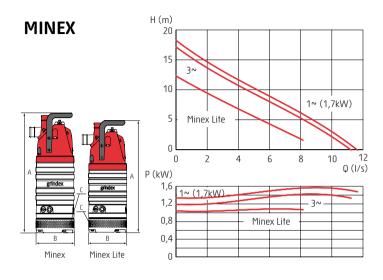
Welcome to Grindex Pump handbook!

With this handbook we want to share some of our wide experience in pumping with submersible pumps. You will find an overview of all Grindex pumps with technical details and a pump school, intended to help pump users with common matters in pumping with submersible pumps. The handbook also contains more sophisticated technical information, like pH tables and graphs that show friction losses in pipes and hoses.

We are sure you will find this handbook handy. This handbook is also available for download from our website, www.grindex.com. If you need more copies, please contact Grindex.

INDEX

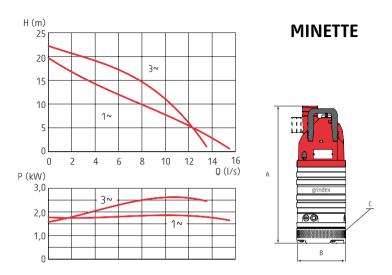
Drainage pumps Minex, Minette, Minor, Major, Master, Master SH, Matador, Maxi, Magnum, Mega	4-16
Sludge pumps Salvador, Senior, Sandy	17-21
Small drainage and sludge pumps Micro, Macro, Solid	22-27
Drainage pumps made of stainless steel, INOX Minette Inox, Major Inox, Master Inox	28-33
Sludge pumps made of stainless steel, INOX Salvador Inox, Senior Inox, Sandy Inox	34-39
Slurry pumps Bravo 20, Bravo 30, Bravo 40, Bravo 50, Bravo 60, Bravo 70	40-48
Accessories	49-50
Grindex Pump school	51-56
Limitations	57
More technical information Calculating friction losses in hoses Formulas for calculating friction losses in hoses and tubes Friction factor Sludge/slurry solids concentration pH tables Salt tables Translation charts	58-61 58 59 59 59 60 60 60
Recommended generator sizes	62-63


Grindex drainage pumps are designed for professional use in tough applications like mines, construction sites, tunnel sites and other demanding industries.

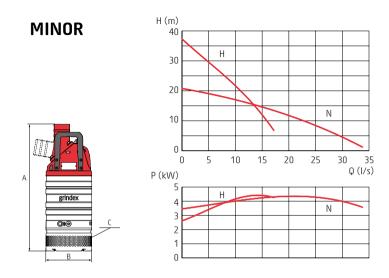
They are designed for:

- Pumping water that may contain solids up to the size of the strainer holes
- Pumping water with abrasive solids
- Pumping ground water
- Pumping raw water
- Pumping spillage water

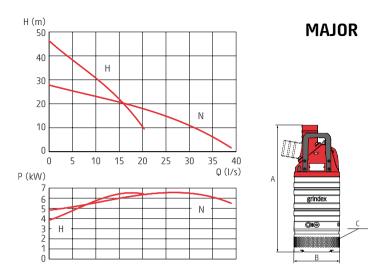
Grindex drainage pumps are designed for continuous, unattended operation. They have proven their reliability and dependable performance in demanding areas like building and construction, mining, tunnelling, quarries, industries and rental applications.



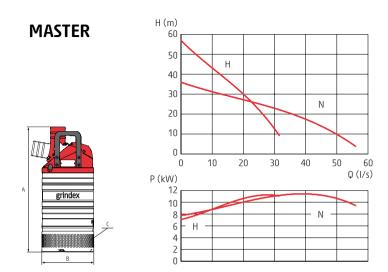
Technical data	Lite (1~ 1,2 kW)	1∾ (1,7kW)	3∾
Discharge connection	2"	2″	2″
Rated output	0,85 kW	1,3 kW	1,2 kW
Max power consumption	1,2 kW	1,7 kW	1,6 kW
Shaft speed	2755 RPM	2860 RPM	2760 RPM
Rated current at 230 V	5,1 A	7,2 A	-
Rated current at 400 V	-	-	2,7 A
1~ (1,7 kW): A: 610 mm Weight: 25 kg	B: ∅195 mm C :	: Ø 7,5 mm	


Minex Lite (1~ 1,2 kW) and 3~: A: 570 mm B: Ø 195 mm

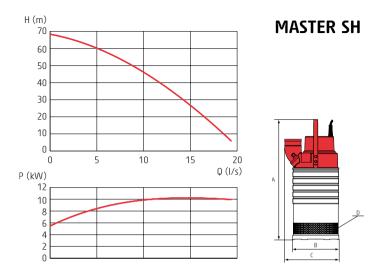
C: Ø 7,5 mm **Weight:** 21 kg


Technical data	1∾	3~			
Discharge connection	3″	3″			
Rated output	1,5 kW	2,2 kW			
Max power consumption	1,9 kW	2,7 kW			
Shaft speed	2800 RPM	2800 RPM			
Rated current at 230 V	8,4 A	-			
Rated current at 400 V	-	4,7 A			

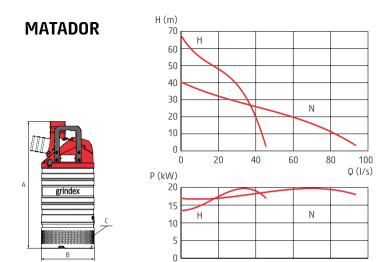
A: 667 mm **B:** Ø 240 mm **C:** Ø 9 mm **Weight:** 30 kg (1~) 32 kg (3~)


Technical data	N	н
Discharge connection	4″	3″
Rated output	3,7 kW	3,7 kW
Max power consumption	4,5 kW	4,5 kW
Shaft speed	2870 RPM	2870 RPM
Rated current at 400 V	7,3 A	7,3 A
Rated current at 500 V	6,0 A	6,0 A
Δ· 793 mm B· Ø 286 mm	(· Ø 10 mm Weight·	57 kg

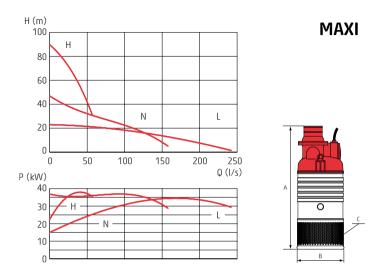
: 793 mm **B**: Ø 286 mm **C**: Ø 10 mm **Weight**: 52 kg


Technical data	N	н
Discharge connection	4″	3″
Rated output	5,6 kW	5,6 kW
Max power consumption	6,7 kW	6,7 kW
Shaft speed	2890 RPM	2890 RPM
Rated current at 400 V	11 A	11 A
Rated current at 500 V	8,7 A	8,7 A
A: 707 mm D: 0 700 mm		

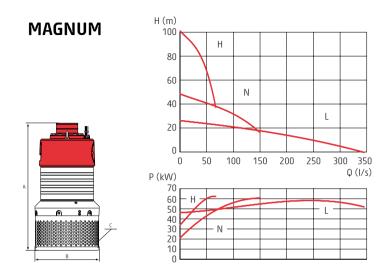
A: 793 mm **B:** Ø 286 mm **C:** Ø 10 mm **Weight:** 54 kg


Technical data	Ν	Н
Discharge connection	6″	4″
Rated output	10 kW	10 kW
Max power consumption	11,7 kW	11,7 kW
Shaft speed	2860 RPM	2860 RPM
Rated current at 400 V	19 A	19 A
Rated current at 500 V	15 A	15 A

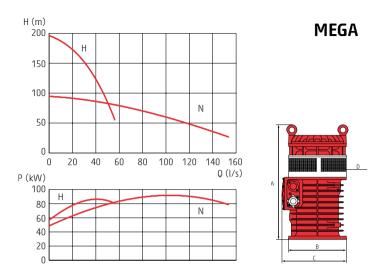
A: 832 mm B: Ø 346 mm C: Ø 12 mm Weight: 80 kg


Technical data

Discharge connection	3″
Rated output	8.8 kW
Max power consumption	10,2 kW
Shaft speed	2835 RPM
Rated current at 400 V	16 A
Rated current at 500 V	13 A
A: 720 mm B: Ø 286 mm C:	330 mm D: Ø 8.5 mm Weight: 60 kg



Technical data	N	н
Discharge connection	6″	4″
Rated output	18 kW	18 kW
Max power consumption	20 kW	20 kW
Shaft speed	2900 RPM	2900 RPM
Rated current at 400 V	32 A	32 A
Rated current at 500 V	26 A	26 A
Δ· 95/ mm Β· Ø 395 mm	(· Ø 12 mm Woight·	1/13 kg


: 954 mm B: Ø 395 mm C: Ø 12 mm Weight: 143 kg

Technical data	L	N	н		
Discharge connection	8″	8″	4″		
Rated output	30 kW	37 kW	37 kW		
Max power consumption	33 kW	41 kW	41 kW		
Shaft speed	1465 RPM	2950 RPM	2950 RPM		
Rated current at 400 V	56 A	65 A	65 A		
Rated current at 500 V	45 A	52 A	52 A		
A: 1345 mm B: Ø 510 mm C: Ø 12 mm Weight: 285 kg					

Technical data	L	N	н		
Discharge connection	10″	8″	6″		
Rated output	57 kW	57 kW	57 kW		
Max power consumption	62 kW	62 kW	64 kW		
Shaft speed	1475 RPM	1475 RPM	2950 RPM		
Rated current at 400 V	107 A	107 A	98 A		
Rated current at 500 V	85 A	85 A	79 A		
A: 1475 mm B: Ø 750 mm C: Ø 12 mm Weight: 540 kg					

Technical data	N	н
Discharge connection	6″	4″
Rated output	90 kW	90 kW
Max power consumption	95 kW	95 kW
Shaft speed	2965 RPM	2965 RPM
Rated current at 400 V	148 A	148 A
Rated current at 500 V	118 A	118 A
A: 1245 mm B: 610 mm C	: 680 mm D: 10x10 mm	n

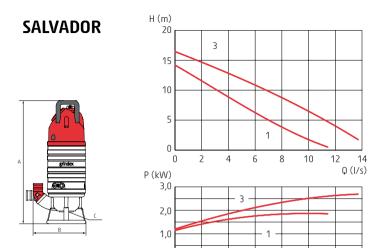
A: 1245 mm **B:** 610 mm **C:** 680 mm **D:** 10x10 mm **Weight:** 900 kg (N), 985 kg (H)

Materials in drainage pumps

	×	ette	F	×	er	Master SH	Matador		Magnum	
	Minex	Minette	Mino	Major	Master	Masi	Matë	Maxi	Mag	Mega
Material										
Upper seal										
Tungsten carbide - tungsten carbide	•	•	•	•	•		٠	•	•	٠
Carbon - silicon carbide						•				
Lower seal										
Tungsten carbide - tungsten carbide	•	•	•	•	•		•	•	•	٠
Silicon carbide - silicon carbide						•				
Stator housing										
Aluminium	•	•	•	•	•	•		•	•	
Cast iron							٠			٠
Outer casing										
Stainless steel	•	•	•	•	•	•	•	•	•	٠
Motor shaft										
Stainless steel	•	•	•	•	•	•	٠	•	•	٠
Impeller										
High chrome alloyed white cast iron	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
Suction cover										
High chrome cast iron		3∾	٠	٠	٠		•			
Lower diffusor										
Nitrile rubber	•	1∾				•		•		٠
Polyurethane								٠	٠	
Upper diffusor										
Nitrile rubber	•		•	•	•	٠	٠	٠	•	
Polyurethane								٠		
Screws and nuts										
Stainless steel	•	•	•	•	•	•	٠	•	•	٠
0-rings										
Nitrile rubber	•	•	•	•	•	•	•	•	•	٠
Casted parts										
Aluminium	•	•	•	٠	٠	٠	•	•	•	

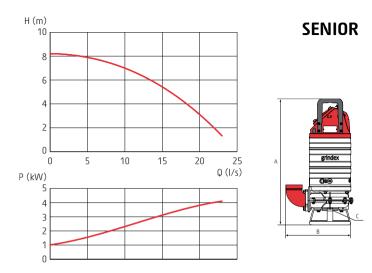
Sludge pumps

Grindex sludge pumps are designed for professional use in tough applications like mines, construction sites, tunnel sites and other demanding industries.


They are designed for:

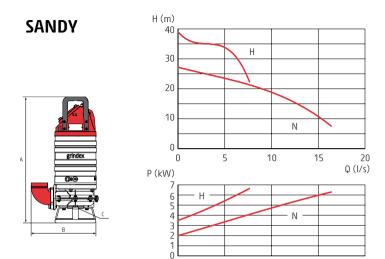
- Pumping water with high content of solids, up to the size of 80 mm.
- Pumping water which contains abrasive particles
- Pumping different types of mud and sludge
- Pumping light slurry

The pumps are designed for continuous, unattended operation. They have proven their reliability and dependable performance in demanding areas like building and construction, mining, tunnelling, quarries, industries, car washes and rental applications.


Sludge pumps

Technical data	1∾	3~
Discharge connection	3″	3″
Rated output	1,5 kW	2,2 kW
Max power consumption	1,9 kW	2,7 kW
Shaft speed	2800 RPM	2800 RPM
Rated current at 230 V	8,4 A	-
Rated current at 400 V	-	4,7 A
	~ 50	244

0


A: 766 mm B: Ø 375 mm C: Ø 50 mm Weight: 34 kg

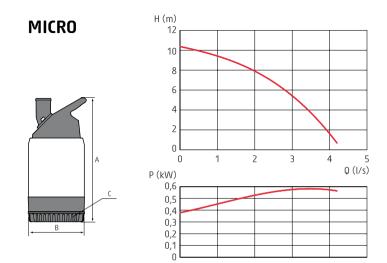
Technical data

Discharge connection	4″
Rated output	3,2 kW
Max power consumption	4,2 kW
Shaft speed	1480 RPM
Rated current at 400 V	7,6 A
Rated current at 500 V	6,0 A
A: 786 mm B: Ø 480 mm C: Ø	ð 80 mm Weight: 57 kg

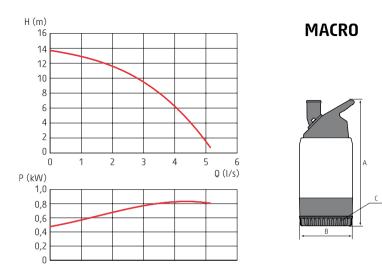
Sludge pumps

Technical data	Ν	н
Discharge connection	3″	3″
Rated output	5,6 kW	5,6 kW
Max power consumption	6,7 kW	6,7 kW
Shaft speed	2890 RPM	2890 RPM
Rated current at 400 V	11 A	11 A
Rated current at 500 V	8,7 A	8,7 A
A: 879 mm B: Ø 480 mm	ſ • Ø 46 mm (N) Ø 32 r	nm (H) Weight: 57 kg

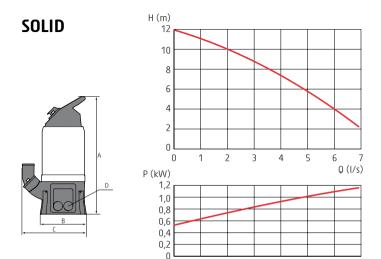
: 879 mm **B:** ∅ 480 mm **C:** ∅ 46 mm (N) ∅ 32 mm (H) **Weight:** 57 kg


Materials in sludge pumps

	Salvador	Senior	Sandy
Material	S	N	S
Upper seal:			
Tungsten carbide - tungsten carbide	•	•	•
Lower seal			
Tungsten carbide - tungsten carbide	•	•	•
Stator housing			
Aluminium	•	•	•
Outer casing			
Stainless steel	•	•	•
Motor shaft			
Stainless steel	•	•	•
Impeller			
High chrome alloyed white cast iron	•	•	•
Pump housing			
Polyurethane	•	•	•
Screws and nuts			
Stainless steel	•	•	٠
0-rings			
Nitrile rubber	•	•	•
Casted parts			
Aluminium	•	•	٠


These small drainage and sludge pumps are small, easy to carry, yet still intended for professional use. They are frequently used in construction and rental applications, flood relief in basements and other applications that require lightweight pumps. Their capability of pumping liquids with pH values 3-9 makes them a good choice for use in general industries too.

The sludge pump Solid has set a new standard for lightweight sludge pumps and is appreciated all over the world. It can pump solids in suspension up to the size of 38 mm.

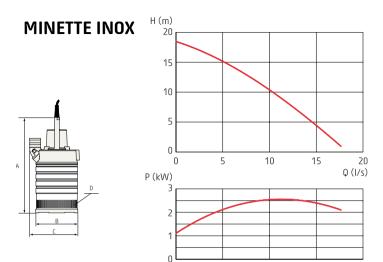


Technical data	1∾
Discharge connection	2″
Rated output	0,42 kW
Max power consumption	0,59 kW
Shaft speed	2760 RPM
Rated current at 230 V	2,7 A
A: 400 mm B: Ø 185 mm C: 5 x	11 mm Weight: 10 kg

Technical data	1~
Discharge connection	2"
Rated output	0,75 kW
Max power consumption	0,97 kW
Shaft speed	2800 RPM
Rated current at 230 V	4,2 A
A: 430 mm B: ∅ 185 mm	C: 5 x 11 mm Weight: 12,5 kg

Technical data	1~
Discharge connection	2″
Rated output	0,9 kW
Max power consumption	1,2 kW
Shaft speed	2800 RPM
Rated current at 230 V	5,2 A
A: 510 mm B: ∅ 185 mm	C: 280 mm D: Ø 38 mm Weight: 15 kg

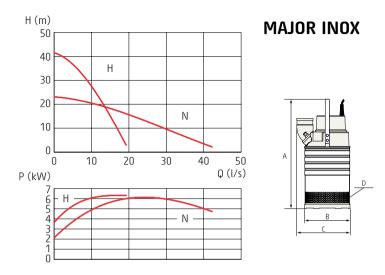
Materials in small drainage and sludge pumps

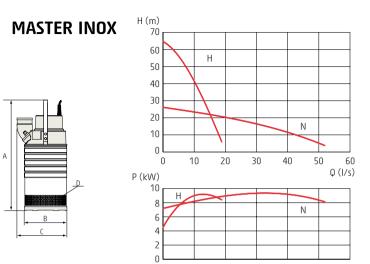

	Micro	Macro	Solid
	2	2	Ś
Material			
Pump top			
Stainless steel/ reinforced polymer	•	•	•
Diffuser (drainage)			
Polyurethane wear parts	•	•	
Pump housing (sludge)			
Polyurethane wear parts			•
Outer casing			
Stainless steel	•	•	•
Stator housing			
Stainless steel	•	•	•
Motor shaft			
Stainless steel	•	•	٠
Upper seal			
Carbon/ceramic	•	•	•
Lower seal			
Silicon carbide/Silicon carbide	•	•	٠
Impeller			
Polyurethane	•	٠	٠
Screws and nuts			
Stainless steel	•	•	•

Drainage pumps made of stainless steel, INOX

These pumps are designed to meet the tough requirements from mines, construction sites, landfill sites and other applications that deal with corrosive water. One application is in mines where the water becomes caustic and destroys conventional pumps in matter of days. The pumps may also be used in applications where saltwater is pumped, like shipyards, fish farms, construction works in harbours and offshore projects. All INOX pumps can handle pH values from 2 – 10. They can also be equipped with zinc anodes for extra protection.

Drainage pumps made of stainless steel, INOX




Technical data

Discharge connection	3″
Rated output	2,0 kW
Max power consumption	2,7 kW
Shaft speed	2800 RPM
Rated current at 400 V	4,7 A
A: 535 mm B: Ø 240 mm C: 2	95 mm D: Ø 7,5 mm Weight: 44 kg

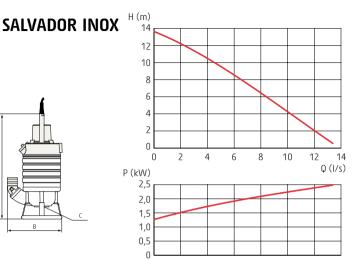
Drainage pumps made of stainless steel, INOX

Technical data	N	н
Discharge connection	4″	3″
Rated output	6,3 kW	6,3 kW
Max power consumption	7,3 kW	7,3 kW
Shaft speed	2840 RPM	2840 RPM
Rated current at 400 V	12 A	12 A
A: 665 mm B: Ø 280 mm C: 330) mm D: Ø 8,5 mm	Weight: 65 kg

Technical data	N	Н	
Discharge connection	4″	3″	
Rated output	8,0 kW	8,0 kW	
Max power consumption	9,4 kW	9,4 kW	
Shaft speed	2800 RPM	2800 RPM	
Rated current at 400 V	15 A	15 A	
A: 720 mm B: Ø 280 mm C: 330 mm D: Ø 8,5 mm Weight: 77 kg (N), 81 kg (H)			

Materials in drainage pumps made of stainless steel

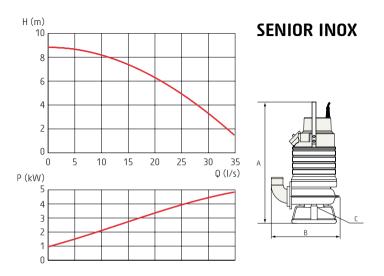
	Minetl NOX	Major INOX	Mastel INOX
Material			
Upper seal			
Carbon - silicon carbide	•	•	•
Lower seal			
Silicon carbide - silicon carbide	•	•	•
Casted parts			
Stainless steel (EN 10283-1.14412)	•	•	•
Outer casing			
Stainless steel (EN 10088-3-1.14436)	•	•	•
Motor shaft			
Stainless steel (EN 10088-3-1.14460)	•	•	•
Impeller			
Stainless steel (EN 10283-1.14412)	•	•	•
Screws and nuts			
Stainless steel (A4)	•	•	•
0-rings			
Viton rubber	•	•	•
Diffusers			
Nitrile rubber	•	•	•


Sludge pumps made of stainless steel, INOX

Our sludge pumps in stainless steel are used for pumping corrosive fluids with solids in harsh environment. The solids can be up to the size of 50 mm. These pumps are designed to meet the tough requirements from mines, construction sites, landfill sites and other applications that deal with corrosive water. One application is in mines where the water becomes caustic and destroys conventional pumps in matter of days. The pumps may also be used in applications where saltwater is pumped, like shipyards, fish farms, construction works in harbours and offshore projects. All INOX pumps carrhandle pH values from 2 - 10. They can also be equipped with zinc anodes for exits protection.

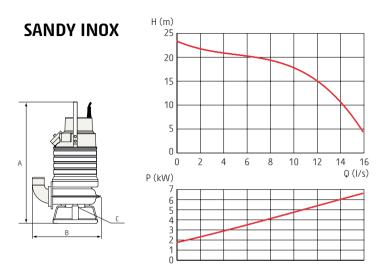
Sludge pumps made of stainless steel, INOX

Sludge pumps made of stainless steel, INOX



Technical data

A

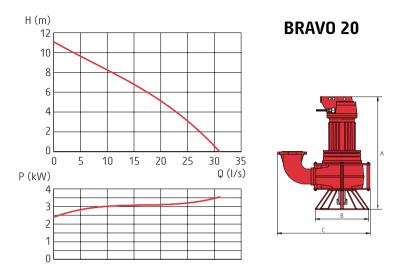

Discharge connection	3″
Rated output	2,0 kW
Max power consumption	2,7 kW
Shaft speed	2800 RPM
Rated current at 400 V	4,7 A
A: 645 mm B: 375 mm C: ∅ 50 mm Weight: 48 kg	

Sludge pumps made of stainless steel, INOX

Technical data

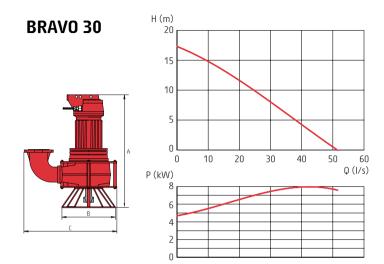
Discharge connection	4″
Rated output	4,1 kW
Max power consumption	5,2 kW
Shaft speed	1350 RPM
Rated current at 400 V	8,8 A
A: 755 mm B: 480 mm C: ∅ 80 m	nm Weight: 86 kg

Technical data


Discharge connection	3″
Rated output	6,3 kW
Max power consumption	7,3 kW
Shaft speed	2840 RPM
Rated current at 400 V	12 A
A: 755 mm B: 480 mm C: ∅ 46 m	nm Weight: 86 kg

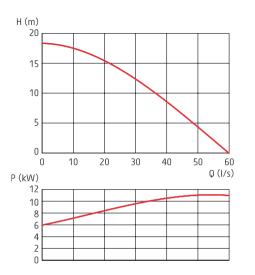
	Salva INDX	Senic INDX	Sand INOX
Material			
Upper seal			
Carbon - silicon carbide	•	٠	٠
Lower seal			
Silicon carbide - silicon carbide	•	٠	٠
Casted parts			
Stainless steel (EN 10283-1.14412)	•	•	•
Outer casing			
Stainless steel (EN 10088-3-1.14436)	•	•	•
Motor shaft			
Stainless steel (EN 10088-3-1.14460)	•	•	•
Impeller			
Stainless steel (EN 10283-1.14412)	•	•	•
Screws and nuts			
Stainless steel (A4)	•	•	•
0-rings			
Viton rubber	٠	٠	٠
Pump housing			
Nitrile rubber	•	•	•

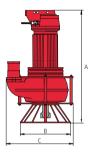
Slurry pumps, BRAVO


Grindex slurry pumps are designed for use in quarries, mines, dredging, cleaning of settling ponds and other abrasive other industries that require pumps with very high durability. Each part of the BRAVO pump is designed for maximum endurance and reliability – an absolute must when pumping slurry. Wear is reduced by using NiHard 4 for all hydraulic components. NiHard 4 is a nicket alloy and one of the hardest materials available today. All BRAVO pumps can handle liquids with pH values from 4 up to 10.

Technical data

Discharge connection	4″
Rated output	3,5 kW
Max power consumption	4,4 kW
Shaft speed	1450 RPM
Rated current at 400 V	8,8 A
Rated current at 500 V	7,0 A
Throughlet with/without agitator	30/80 mm
A: 850 mm B: Ø 410 mm C: 713 mi	m Weight: 162 kg

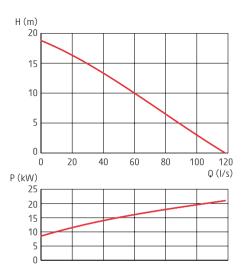

Slurry pumps, BRAVO



Toc	hnica		1.1
TEC	IIIIICo	ուսօ	i a

Discharge connection	4″
Rated output	7,5 kW
Max power consumption	9,2 kW
Shaft speed	1390 RPM
Rated current at 400 V	15,1 A
Rated current at 500 V	12,1 A
Throughlet with/without agitator	30/80 mm
A: 850 mm B: Ø 410 mm C: 713 mi	m Weight: 167 kg

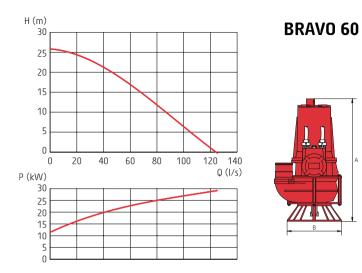
BRAVO 40


Technical data

Discharge connection	4″
Rated output	13,0 kW
Max power consumption	15,1 kW
Shaft speed	1450 RPM
Rated current at 400 V	26,0 A
Rated current at 500 V	20,8 A
Throughlet with/without agitator	35/100 mm
A: 960 mm B: Ø 410 mm C: 580 mm	m Weight: 199 kg

Slurry pumps, BRAVO

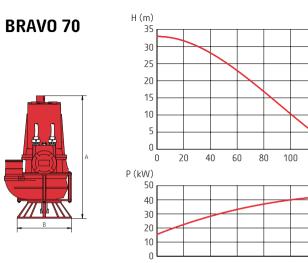
BRAVO 50



Technical data	_				
	loc	hhi	Cal	0.51	
	HEC.		cat	uan	а.

Discharge connection	6″
Rated output	22,0 kW
Max power consumption	26,2 kW
Shaft speed	1450 RPM
Rated current at 400 V	46 <i>,</i> 1 A
Rated current at 500 V	36,9 A
Throughlet with/without agitator	50/100 mm

A: 1040 mm B: Ø 470 mm Weight: 344 kg



Technical data

Discharge connection	6″
Rated output	34,0 kW
Max power consumption	39,5 kW
Shaft speed	1450 RPM
Rated current at 400 V	66,4 A
Rated current at 500 V	53,1 A
Throughlet with/without agitator	50/100 mm
• • • • • • • • • • • • • • • • • • • •	407.1

A: 1100 mm B: Ø 470 mm Weight: 407 kg

Slurry pumps, BRAVO

100	hh	ical		
		псан	LU CI	

Discharge connection	6″
Rated output	48,0 kW
Max power consumption	54,4 kW
Shaft speed	1450 RPM
Rated current at 400 V	91,5 A
Rated current at 500 V	73,2 A
Throughlet with/without agitator	50/100 mm

A: 1175 mm B: Ø 470 mm Weight: 475 kg

Specifications can be changed without notice.

120 140

Q (l/s)

Pumping slurry

Pumping fluids with high solids concentrations is more complicated than pumping water. To avoid sedimentation in the system you need to choose the right pump size and dimensions of hoses and pipes. The concentration of solids together with their size and shape may also affect pump performance and power requirements and therefore pump choice. Remember that settled solids might need external agitators, water jets or mixers to get them back in suspension and allow them to be pumped.

As each application requires its own calculation, we recommend you to contact your Grindex dealer.

Materials in slurry pumps

	Bravo 20	Bravo 30	Bravo 40	Bravo 50	Bravo 60	Bravo 70
Material						
Motor housing						
Cast iron	•	•	•	•	•	•
Seal housing						
NiHard 4	٠	٠	•	٠	•	•
Volute						
NiHard 4	•	•	•	•	•	•
Hose adapter						
NiHard 4	•	•	•	٠	٠	•
Impeller						
NiHard 4	٠	٠	•	٠	•	•
Agitator						
NiHard 4	٠	٠	•	٠	٠	•
Motor shaft						
Stainless steel	•	٠	•	٠	٠	•
Screws and nuts						
Stainless steel	•	•	•	٠	•	•

E

Accessories

Some applications require the use of additional devices. Here is a list of Grindex accessories and what pump they can be used with.

_

- Available
- Not an optimal choice
- x Not available

		llar		itio	
	Zinc anodes	Low suction collar	Float switch	Tandem connectio	Pump raft
	Zinc	Low	Floa	Tan	Pun
Drainage pumps					
Minex	0	0	0	Х	0
Minette	0	0	0	х	0
Minor	0	0	0	0	0
Major	0	0	0	0	0
Master	0	х	0	0	0
Master SH	0	х	0	0	0
Matador	0	х	0	0	0
Maxi	0	х	0	0	0
Magnum	0	х	0	0 (H)	0
Mega	0	х	0	х	х
Sludge pumps					
Salvador	0	х	0	х	•
Senior	0	х	0	Х	•
Sandy	0	х	0	Х	•

Accessories

	nodes	Low suction collar	Float switch	Tandem connection	raft
	Zinc anodes	Low si	Float :	Tande	Pump raft
Small drainage an	d sludge pum	ps			
Micro	х	0	0	х	0
Macro	х	0	0	х	0
Solid	х	х	0	х	0
Drainage pumps m	ade of stainly	acc ctool			
Minette Inox		0	•	х	•
Major Inox	0	0	•	x	•
Master Inox	0	0	•	x	•
Sludge pumps mad	de of stainles	steel			
Salvador Inox	0	Х	٠	Х	٠
Senior Inox	0	Х	•	Х	•
Sandy Inox	0	х	•	х	•
Slurry pumps					
Bravo 20	х	х	0	х	0
Bravo 30	х	х	0	х	0
Bravo 40	х	х	0	х	0
Bravo 50	х	х	0	х	0
Bravo 60	х	х	0	х	0
Bravo 70	х	х	0	х	0

Grindex Pump school

The school consists of technical articles, intended to help pump users with common matters in pumping with submersible pumps.

Part 1: Choosing the right pump type for the job

A drainage pump is the most commonly used pump type at construction sites. It is used for pumping water with less abrasive solids, like clay. Sand and solids in suspension can also be pumped, up to the size of the strainer holes (normally 7-12 mm). As sand is quite abrasive to the pump, it must not be too concentrated.

Sludge pumps are suitable for pumping water with solids, as well as for pumping sludge. The solids can be up to the size of the pump inlet diameter (normally 32-80 mm).

Pumps made of stainless steel are often used in copper mines, gold mines and other applications with corrosive fluids. An aluminium pump can handle water with pH values from 5-8, while a stainless steel pump can cope with pH values from 2-10.

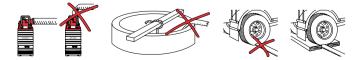
Slurry pumps are designed to handle abrasive solids in suspension, like sand, gravel and concrete, in high concentration. They are also frequently used to move sand in suspension, i.e. at a dredging operation. To cope with the abrasives, the hydraulic parts of a slurry pump are often made of NiHard 4, a very hard metal alloy. For improved performance, slurry pumps are generally equipped with an agitator.

Plug and pump

An electrical submersible pump is easy to use, just plug it in and pump. Several small pumps, placed where the need is for the moment, can pump the water to a dedicated collecting pit through long hoses. As the smaller pumps only weights 15-25 kg, you can carry the pump with you as the works moves to different spots at the site.

In the collection pit, a bigger pump is installed and pumps the water away from the site. By connecting hoses from several pumps to the pit, you can easily dewater a large area with just a few pumps.

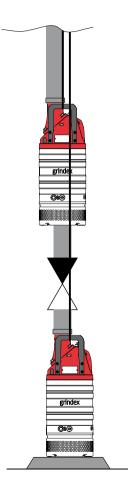
Part 2: Pump arrangement


To install an electric submersible pump is easy; place it in the water, connect the hose and turn on the power. Despite the simplicity, there are a few details to consider for optimizing the pumping:

Arrange the pump so it doesn't burrow itself into sand or clay. This is a common problem at construction sites. It can be avoided quite simple by placing the pump on a bed of coarse gravel or a plank. The pump can also be hung freely by a rope or chain, or put into a cut-down and perforated oil drum.

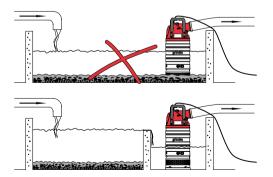
Avoid sharp bend on the hose.

As sharp bends, kinks and pinching of the hose are reducing the capacity of the pump, a lot is won by avoiding those circumstances. Turning the pumps discharge connection so the hose doesn't begin with at kink is easily arranged; it can be fitted vertical or horizontal on almost all Grindex pumps.



Tandem connection

In order to achieve higher pumping heads, two or more drainage pumps can be connected in series. For this purpose, a series connecting flange is available as an accessory. It is important that the hoses are equipped with check valves, preventing the pumps from suffering from wear when the water runs back from high heads uncontrolled if a power failure should occur.


Long distance pumping

Tandem connection of pumps can also be used when the water needs to be pumped a longer distance. A simple arrangement can be pumping the water to a dedicated collection pit. The pit should be equipped with another pump, passing the water on. This technique can also be used for dewatering a greater area with several pumps spread out, pumping the water to a collection pit. The pit is then equipped with a greater pump, that pumps the water away from the site.

Part 3: Sedimentation

The pumped water is often containing solids that cause wear on pumps, valves and other dewatering equipment. This problem is very common in mines and tunnel construction sites. When pumping water that contains solids (like drill cuttings and sand), there is a risk of sedimentation in the system. A typical symptom is pipes and/or hoses that get filled with sediment, resulting in capacity losses. When the amount of solids increases, there is also an increase of wear on the pump. One way to prevent this is by using sedimentation tanks where the drill cuttings may settle while the rest of the water is pumped away. The tank needs to be as close to the source as possible, ensuring that the solids are pumped as short distance as possible where the solids can settle in peace. To ensure the efficiency of the sedimentation tank, it needs to have as big surface area as possible. The more solids present in the water, the more careful the design of the sedimentation system is necessary.

For applications where solids can not be avoided, there are recommendations for the velocity of the medium in the discharge line:

Mixture

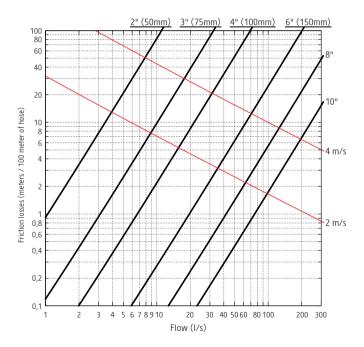
- 1. Water + coarse gravel
- 2. Water + gravel
- 3. Water + sand

Sand particles < 0.1 mm (0.004 in) 1.5 m/s (8.2 ft/s)

Sand particles < 0.6 mm (0.024 in) 2.5 m/s (4.9 ft/s)

Min. velocity in discharge line

4 m/s (13.1 ft/s)3 m/s (11.5 ft/s)


Limitations for Grindex pumps

Limitations	Drainage pumps	Sludge pumps	Small drainage and sludge pumps
Max. submersion depth (IP68)	20 m (Mega: 75 m)	20 m	20 m
Max. liquid temperature	40°C	40°C	40°C
Max. liquid density	1100 kg/m³	1100 kg/m ³	1100 kg/m ³
pH of the liquid	5-8 (Mega: 6-13)	5-8	3-9

Limitations	Stainless steel pumps	Slurry pumps
Max. submersion depth (IP68)	20 m	20 m
Max. liquid temperature	40°C	40°C
Max. liquid density	1100 kg/m³	1100 kg/m³
pH of the liquid	2-10	4-10

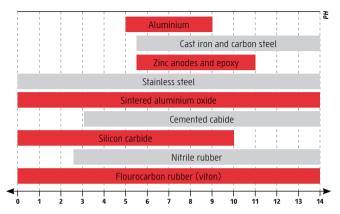
Chart for calculating friction losses in hoses

All pump capacities are measured for clean water, directly at the discharge outlet. When collection a hose you need to consider the friction losses that comes from the size and length of the hose. The chart below shows this.

Formulas calculating friction losses in hoses and tubes

Friction loss (meters)	Velocity (m/s)	Reynolds number	Friction factor (Swamee & Jain formula)
$H_{friction} =$	V =	Re =	f =
$1000 \times f \times L \times v^2$	1274 × Q	$v \times D$	0,25
$2 \times g \times D$	D^2	1000 × µ	$\left[{}^{10}log\left(\frac{\varepsilon}{3,7\times D}+\frac{5,74}{Re^{0.9}}\right)\right]^2$
f = friction factor	Q = flow (I/s)	v = velocity	$\boldsymbol{\varepsilon}$ = roughness factor
L = length (m)	D = pipe \emptyset	D = pipe Ø	(mm)
v = avg. velocity	(mm)	(mm)	$D = pipe \emptyset (mm)$
g = 9.81 m/s² D = pipe ∅ (mm)		μ = viscosity = 1,161 x 10 ⁻⁶ ^{m2} /s = 1 cSt	Re = Reynolds number

The chart at page 58 was created using the following formulas:

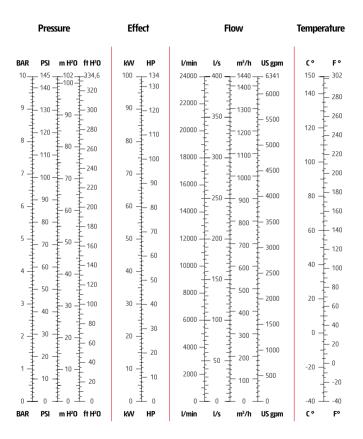

Friction factor

Material	Cast iron	Stainless	PVC	HDPE	Concrete	Hose
ε new (mm)	0,25	0,10	0,05	0,05	0,50	0,25
$\boldsymbol{\epsilon}$ used (mm)	1,00	0,25	0,25	0,25	3,00	1,00

Sludge/slurry solids concentration

By volume (C _v)	By mass/weight (C _m)	Mixture
$C_v = \frac{V_{solids}}{V_{solids + water}}$	$C_m = \frac{m_{solids}}{m_{solids + water}}$	$\frac{SV_{mixture}}{SV_{solids}} = \frac{C_v}{C_m}$
V _{solids} = volume of solids V _{solids+water} = total sludge volume	m _{solids} = mass of solids m _{solids+water} = total sludge mass	SV = Specific weight

pH tables



Salt tables

	0,04	0,1 '	Salt water 🔍	3,2	27
Aluminium			+ zinc anodes		% sait
Cast iron and carbon steel			+ zinc anodes	and epoxy	
Stainless steel AISI 316	1		+ zinc anodes		
Stainless steel AISI 304			+ zinc anodes		
Sintered aluminium oxide	ł				
Cemented carbide			+ zinc anodes		
Silicon carbide					e E
Nitrile rubber					ppm chlorides
Flourocarbon rubber (viton)					udd
1 10 10	2 200	500	10 ³	10 ⁴ 18 000	10 ⁵ Saturated

60

Translation charts

Recommended generator sizes

Voltages 3~400 V, 50 Hz

Pump model	Max. power consump- tion	Rated current	Permis- sible cable length	Delayed fuse	Generator set
Minex	1,6 kW	2.7 A	270 m	10 A	5 KVA
Minette	2.7 kW	4,7 A	200 m	10 A	8 KVA
	,	,			
Minor N H	4,5 kW	7,3 A	215 m	16 A	13 KVA
Major N H	6,7 kW	11 <i>,</i> 0 A	145 m	25 A	18 KVA
Master SH	10,2 kW	16,0 A	95 m	32 A	25* / 30 KVA
Master N H	11,7 kW	19,0 A	130 m	32 A	25* / 30 KVA
Matador N H	20,0 kW	32,0 A	115 m	63 A	40* / 50 KVA
Maxi N H	41,0 kW	65,0 A	100 m	100 A	85* / 105 KVA
Maxi L	33,0 kW	56,0 A	120 m	100 A	70* / 85 KVA
Magnum	62,0 kW	107,0 A	100 m	190 A	125* / 155 KVA
Mega	95 kW	154 A	35 m	230 A	225* / 270 KVA
Minette Inox	2,7 kW	4,7 A	200 m	10 A	8 KVA
Major Inox	7,3 kW	12,0 A	130 m	25 A	20 KVA
Master Inox	9,4 kW	15 A	165 m	32 A	25 KVA
Salvador	2,7 kW	4,7 A	200 m	10 A	8 KVA
Senior	5,1 kW	9,0 A	128 m	25 A	13 KVA
Sandy	6,7 kW	11,0 A	145 m	25 A	18 KVA
Salvador Inox	2,7 kW	4,7 A	200 m	10 A	8 KVA
Senior Inox	4,1 kW	8,8 A	190 m	16 A	10 KVA
Sandy Inox	7,3 kW	12,0 A	130 m	25 A	18 KVA

*Y/D start

Pump model	Max. power consump- tion	Rated current	Permis- sible cable length	Delayed fuse	Genera- tor set
Micro	0,59 kW	2,7 A	60 m	10 A	3 KVA
Macro	0,97 kW	4,2 A	60 m	10 A	3 KVA
Minex Lite	1,2 kW	5,1 A	70 m	10 A	4 KVA
Minex	1,7 kW	7,2 A	50 m	16 A	5 KVA
Minette	1,9 kW	8,5 A	50 m	16 A	5 KVA
Solid	1,2 kW	5,2 A	50 m	16 A	4 KVA
Salvador	1,9 kW	8,4 A	50 m	16 A	5 KVA

Voltages 1~230 V, 50 Hz

Note

- In general, delayed fuse shall be dimensioned by rated current x 1,75
- The above given kVA values are meant as guidelines to simplify the choice of generator size.

Regarding size of generator set, each different type has different characteristic; therefore it is always recommended to consult the manufacturer of generator to find out if the actual generator is capable of operating the pump.

Make sure that the cable is sized to allow a voltage drop of max. 5% of the nominal voltage.

www.grindex.com

Price: €3